Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

A hybrid learning agent for episodic learning tasks with unknown target distance (2412.13686v1)

Published 18 Dec 2024 in quant-ph

Abstract: The "hybrid agent for quantum-accessible reinforcement learning", as defined in (Hamann and W\"olk, 2022), provides a proven quasi-quadratic speedup and is experimentally tested. However, the standard version can only be applied to episodic learning tasks with fixed episode length. In many real-world applications, the information about the necessary number of steps within an episode to reach a defined target is not available in advance and especially before reaching the target for the first time. Furthermore, in such scenarios, classical agents have the advantage of observing at which step they reach the target. Whether the hybrid agent can provide an advantage in such learning scenarios was unknown so far. In this work, we introduce a hybrid agent with a stochastic episode length selection strategy to alleviate the need for knowledge about the necessary episode length. Through simulations, we test the adapted hybrid agent's performance versus classical counterparts. We find that the hybrid agent learns faster than corresponding classical learning agents in certain scenarios with unknown target distance and without fixed episode length.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube