Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers (2412.10488v2)

Published 13 Dec 2024 in cs.CV, cs.AI, and cs.GR

Abstract: Scalable Vector Graphics (SVG) are essential XML-based formats for versatile graphics, offering resolution independence and scalability. Unlike raster images, SVGs use geometric shapes and support interactivity, animation, and manipulation via CSS and JavaScript. Current SVG generation methods face challenges related to high computational costs and complexity. In contrast, human designers use component-based tools for efficient SVG creation. Inspired by this, SVGBuilder introduces a component-based, autoregressive model for generating high-quality colored SVGs from textual input. It significantly reduces computational overhead and improves efficiency compared to traditional methods. Our model generates SVGs up to 604 times faster than optimization-based approaches. To address the limitations of existing SVG datasets and support our research, we introduce ColorSVG-100K, the first large-scale dataset of colored SVGs, comprising 100,000 graphics. This dataset fills the gap in color information for SVG generation models and enhances diversity in model training. Evaluation against state-of-the-art models demonstrates SVGBuilder's superior performance in practical applications, highlighting its efficiency and quality in generating complex SVG graphics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zehao Chen (7 papers)
  2. Rong Pan (33 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets