Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing and Mitigating Model Collapse in Rectified Flow Models (2412.08175v2)

Published 11 Dec 2024 in cs.CV and cs.LG

Abstract: Training with synthetic data is becoming increasingly inevitable as synthetic content proliferates across the web, driven by the remarkable performance of recent deep generative models. This reliance on synthetic data can also be intentional, as seen in Rectified Flow models, whose Reflow method iteratively uses self-generated data to straighten the flow and improve sampling efficiency. However, recent studies have shown that repeatedly training on self-generated samples can lead to model collapse (MC), where performance degrades over time. Despite this, most recent work on MC either focuses on empirical observations or analyzes regression problems and maximum likelihood objectives, leaving a rigorous theoretical analysis of reflow methods unexplored. In this paper, we aim to fill this gap by providing both theoretical analysis and practical solutions for addressing MC in diffusion/flow models. We begin by studying Denoising Autoencoders and prove performance degradation when DAEs are iteratively trained on their own outputs. To the best of our knowledge, we are the first to rigorously analyze model collapse in DAEs and, by extension, in diffusion models and Rectified Flow. Our analysis and experiments demonstrate that rectified flow also suffers from MC, leading to potential performance degradation in each reflow step. Additionally, we prove that incorporating real data can prevent MC during recursive DAE training, supporting the recent trend of using real data as an effective approach for mitigating MC. Building on these insights, we propose a novel Real-data Augmented Reflow and a series of improved variants, which seamlessly integrate real data into Reflow training by leveraging reverse flow. Empirical evaluations on standard image benchmarks confirm that RA Reflow effectively mitigates model collapse, preserving high-quality sample generation even with fewer sampling steps.

Summary

We haven't generated a summary for this paper yet.