Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

AmCLR: Unified Augmented Learning for Cross-Modal Representations (2412.07979v1)

Published 10 Dec 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Contrastive learning has emerged as a pivotal framework for representation learning, underpinning advances in both unimodal and bimodal applications like SimCLR and CLIP. To address fundamental limitations like large batch size dependency and bimodality, methods such as SogCLR leverage stochastic optimization for the global contrastive objective. Inspired by SogCLR's efficiency and adaptability, we introduce AmCLR and xAmCLR objective functions tailored for bimodal vision-LLMs to further enhance the robustness of contrastive learning. AmCLR integrates diverse augmentations, including text paraphrasing and image transformations, to reinforce the alignment of contrastive representations, keeping batch size limited to a few hundred samples unlike CLIP which needs batch size of 32,768 to produce reasonable results. xAmCLR further extends this paradigm by incorporating intra-modal alignments between original and augmented modalities for richer feature learning. These advancements yield a more resilient and generalizable contrastive learning process, aimed at overcoming bottlenecks in scaling and augmentative diversity. Since we have built our framework on the existing SogCLR, we are able to demonstrate improved representation quality with fewer computational resources, establishing a foundation for scalable and robust multi-modal learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.