Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Scaling Laws Rooted in the Data Distribution (2412.07942v1)

Published 10 Dec 2024 in cs.LG and cond-mat.dis-nn

Abstract: Deep neural networks exhibit empirical neural scaling laws, with error decreasing as a power law with increasing model or data size, across a wide variety of architectures, tasks, and datasets. This universality suggests that scaling laws may result from general properties of natural learning tasks. We develop a mathematical model intended to describe natural datasets using percolation theory. Two distinct criticality regimes emerge, each yielding optimal power-law neural scaling laws. These regimes, corresponding to power-law-distributed discrete subtasks and a dominant data manifold, can be associated with previously proposed theories of neural scaling, thereby grounding and unifying prior works. We test the theory by training regression models on toy datasets derived from percolation theory simulations. We suggest directions for quantitatively predicting LLM scaling.

Summary

We haven't generated a summary for this paper yet.