Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer (2412.07720v2)

Published 10 Dec 2024 in cs.CV

Abstract: We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for modeling continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) on standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We show that ACDiT performs best among all autoregressive baselines under similar model scales on image and video generation tasks. We also demonstrate that benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and unlocks new avenues for unified models.

Summary

We haven't generated a summary for this paper yet.