Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded solutions of degenerate elliptic equations with an Orlicz-gain Sobolev inequality (2412.07540v2)

Published 10 Dec 2024 in math.AP

Abstract: We consider the boundedness and exponential integrability of solutions to the Dirichlet problem for the degenerate elliptic equation % [ -v{-1}\mathrm{Div}(|\sqrt{Q}\nabla u|{p-2}Q\nabla u)=f|f|{p-2}, \quad 1<p<\infty, \] % assuming that there is a Sobolev inequality of the form % \[ \|\varphi\|_{L^N(v,\Omega)}\leq S_N\|\sqrt{Q} \varphi\|_{L^p(\Omega)}, \] % where $N$ is a power function of the form $N(t)=t^{\sigma p}$, $\sigma\geq 1$, or a Young function of the form $N(t)=t^p\log(e+t)^\sigma$, $\sigma\>1$. In our results we study the interplay between the Sobolev inequality and the regularity assumptions needed on $f$ to prove that the solution is bounded or is exponentially integrable. Our results generalize those previously proved in previous work by the authors.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com