Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Note on Sample Complexity of Interactive Imitation Learning with Log Loss (2412.07057v1)

Published 9 Dec 2024 in stat.ML and cs.LG

Abstract: Imitation learning (IL) is a general paradigm for learning from experts in sequential decision-making problems. Recent advancements in IL have shown that offline imitation learning, specifically Behavior Cloning (BC) with log loss, is minimax optimal. Meanwhile, its interactive counterpart, DAgger, is shown to suffer from suboptimal sample complexity. In this note, we focus on realizable deterministic expert and revisit interactive imitation learning, particularly DAgger with log loss. We demonstrate: 1. A one-sample-per-round DAgger variant that outperforms BC in state-wise annotation. 2. Without recoverability assumption, DAgger with first-step mixture policies matches the performance of BC. Along the analysis, we introduce a new notion of decoupled Hellinger distance that separates state and action sequences, which can be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.