Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Towards Predicting the Success of Transfer-based Attacks by Quantifying Shared Feature Representations (2412.05351v1)

Published 6 Dec 2024 in cs.CV, cs.AI, cs.CR, and cs.LG

Abstract: Much effort has been made to explain and improve the success of transfer-based attacks (TBA) on black-box computer vision models. This work provides the first attempt at a priori prediction of attack success by identifying the presence of vulnerable features within target models. Recent work by Chen and Liu (2024) proposed the manifold attack model, a unifying framework proposing that successful TBA exist in a common manifold space. Our work experimentally tests the common manifold space hypothesis by a new methodology: first, projecting feature vectors from surrogate and target feature extractors trained on ImageNet onto the same low-dimensional manifold; second, quantifying any observed structure similarities on the manifold; and finally, by relating these observed similarities to the success of the TBA. We find that shared feature representation moderately correlates with increased success of TBA (\r{ho}= 0.56). This method may be used to predict whether an attack will transfer without information of the model weights, training, architecture or details of the attack. The results confirm the presence of shared feature representations between two feature extractors of different sizes and complexities, and demonstrate the utility of datasets from different target domains as test signals for interpreting black-box feature representations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube