Krylov Complexity in Mixed Phase Space (2412.04963v3)
Abstract: We investigate the Krylov complexity of thermofield double states in systems with mixed phase space, uncovering a direct correlation with the Brody distribution, which interpolates between Poisson and Wigner statistics. Our analysis spans two-dimensional random matrix models featuring (I) GOE-Poisson and (II) GUE-Poisson transitions and extends to higher-dimensional cases, including a stringy matrix model (GOE-Poisson) and the mass-deformed SYK model (GUE-Poisson). Krylov complexity consistently emerges as a reliable marker of quantum chaos, displaying a characteristic peak in the chaotic regime that gradually diminishes as the Brody parameter approaches zero, signaling a shift toward integrability. These results establish Krylov complexity as a powerful diagnostic of quantum chaos and highlight its interplay with eigenvalue statistics in mixed phase systems.