Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Directed Structural Adaptation to Overcome Statistical Conflicts and Enable Continual Learning (2412.04190v1)

Published 5 Dec 2024 in cs.LG and cs.AI

Abstract: Adaptive networks today rely on overparameterized fixed topologies that cannot break through the statistical conflicts they encounter in the data they are exposed to, and are prone to "catastrophic forgetting" as the network attempts to reuse the existing structures to learn new task. We propose a structural adaptation method, DIRAD, that can complexify as needed and in a directed manner without being limited by statistical conflicts within a dataset. We then extend this method and present the PREVAL framework, designed to prevent "catastrophic forgetting" in continual learning by detection of new data and assigning encountered data to suitable models adapted to process them, without needing task labels anywhere in the workflow. We show the reliability of the DIRAD in growing a network with high performance and orders-of-magnitude simpler than fixed topology networks; and demonstrate the proof-of-concept operation of PREVAL, in which continual adaptation to new tasks is observed while being able to detect and discern previously-encountered tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.