Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Spectral Map (2412.04011v1)

Published 5 Dec 2024 in physics.chem-ph, cs.LG, and physics.bio-ph

Abstract: In molecular dynamics (MD) simulations, transitions between states are often rare events due to energy barriers that exceed the thermal temperature. Because of their infrequent occurrence and the huge number of degrees of freedom in molecular systems, understanding the physical properties that drive rare events is immensely difficult. A common approach to this problem is to propose a collective variable (CV) that describes this process by a simplified representation. However, choosing CVs is not easy, as it often relies on physical intuition. Machine learning (ML) techniques provide a promising approach for effectively extracting optimal CVs from MD data. Here, we provide a note on a recent unsupervised ML method called spectral map, which constructs CVs by maximizing the timescale separation between slow and fast variables in the system.

Summary

We haven't generated a summary for this paper yet.