Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Quantitative convergence of trained quantum neural networks to a Gaussian process (2412.03182v1)

Published 4 Dec 2024 in quant-ph, math-ph, math.MP, and math.PR

Abstract: We study quantum neural networks where the generated function is the expectation value of the sum of single-qubit observables across all qubits. In [Girardi \emph{et al.}, arXiv:2402.08726], it is proven that the probability distributions of such generated functions converge in distribution to a Gaussian process in the limit of infinite width for both untrained networks with randomly initialized parameters and trained networks. In this paper, we provide a quantitative proof of this convergence in terms of the Wasserstein distance of order $1$. First, we establish an upper bound on the distance between the probability distribution of the function generated by any untrained network with finite width and the Gaussian process with the same covariance. This proof utilizes Stein's method to estimate the Wasserstein distance of order $1$. Next, we analyze the training dynamics of the network via gradient flow, proving an upper bound on the distance between the probability distribution of the function generated by the trained network and the corresponding Gaussian process. This proof is based on a quantitative upper bound on the maximum variation of a parameter during training. This bound implies that for sufficiently large widths, training occurs in the lazy regime, \emph{i.e.}, each parameter changes only by a small amount. While the convergence result of [Girardi \emph{et al.}, arXiv:2402.08726] holds at a fixed training time, our upper bounds are uniform in time and hold even as $t \to \infty$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube