Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Diffusion Model with Adjusted Offset Noise (2412.03134v1)

Published 4 Dec 2024 in stat.ML and cs.LG

Abstract: Diffusion models have become fundamental tools for modeling data distributions in machine learning and have applications in image generation, drug discovery, and audio synthesis. Despite their success, these models face challenges when generating data with extreme brightness values, as evidenced by limitations in widely used frameworks like Stable Diffusion. Offset noise has been proposed as an empirical solution to this issue, yet its theoretical basis remains insufficiently explored. In this paper, we propose a generalized diffusion model that naturally incorporates additional noise within a rigorous probabilistic framework. Our approach modifies both the forward and reverse diffusion processes, enabling inputs to be diffused into Gaussian distributions with arbitrary mean structures. We derive a loss function based on the evidence lower bound, establishing its theoretical equivalence to offset noise with certain adjustments, while broadening its applicability. Experiments on synthetic datasets demonstrate that our model effectively addresses brightness-related challenges and outperforms conventional methods in high-dimensional scenarios.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets