Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Image Tokenization with Index Backpropagation Quantization (2412.02692v2)

Published 3 Dec 2024 in cs.CV and cs.AI

Abstract: Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook ($2{18}$) with high dimension ($256$) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on reconstruction and the application of autoregressive visual generation. The code and models are available at https://github.com/TencentARC/SEED-Voken.

Citations (1)

Summary

We haven't generated a summary for this paper yet.