Parity breaking in Thouless quantum walks (2412.02429v1)
Abstract: Non-Abelian evolution is a landmark in modern theoretical physics. But if non-commutative dynamics has a significant impact in the control of entanglement and transport in quantum systems is an open question. Here we propose to utilize non-Abelian Thouless pumping in one-dimensional discrete-time quantum walks in lattices with degenerate Bloch-bands. We show how the interplay of non-commutativity and topology enables geometrically protected quantum coin and shift operators. By composing different non-Abelian pumping cycles, different classes of tunable protected quantum walks arise. Surprisingly, the walks break parity symmetry and generate a dynamic process described by a Weyl-like equation. The amount of entanglement can be varied by acting on the initial conditions. The asymptotic statistical distribution and its features are determined by closed form analytical expression and confirmed numerically.
Collections
Sign up for free to add this paper to one or more collections.