Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tractable Closed-Form Approximation of the Ergodic Rate in Poisson Cellular Networks (2412.02406v1)

Published 3 Dec 2024 in eess.SP

Abstract: The employment of stochastic geometry for the analysis and design of ultra dense networks (UDNs) has provided significant insights into network densification. In addition to the characterization of the network performance and behavior, these tools can also be exploited toward solving complex optimization problems that could maximize the capacity benefits arising in UDNs. However, this is preconditioned on the existence of tractable closed form expressions for the considered figures of merit. In this course, the present paper introduces an accurate approximation for the moment generating function (MGF) of the aggregate other-cell interference created by base stations whose positions follow a Poisson point process of given spatial density. Given the pivotal role of the MGF of the aggregate interference in stochastic geometry and the tractability of the derived MGF, the latter can be employed to substantially simplify ensuing stochastic geometry analyses. Subsequently, the present paper employs the introduced MGF to provide closed form expressions for the downlink ergodic capacity for the interference limited case, and validates the accuracy of these expressions by the use of extensive Monte Carlo simulations. The derived expressions depend on the density of users and base stations, setting out a densification road map for network operators and designers of significant value.

Citations (13)

Summary

We haven't generated a summary for this paper yet.