Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiffPatch: Generating Customizable Adversarial Patches using Diffusion Models (2412.01440v3)

Published 2 Dec 2024 in cs.CV

Abstract: Physical adversarial patches printed on clothing can enable individuals to evade person detectors, but most existing methods prioritize attack effectiveness over stealthiness, resulting in aesthetically unpleasing patches. While generative adversarial networks and diffusion models can produce more natural-looking patches, they often fail to balance stealthiness with attack effectiveness and lack flexibility for user customization. To address these limitations, we propose DiffPatch, a novel diffusion-based framework for generating customizable and naturalistic adversarial patches. Our approach allows users to start from a reference image (rather than random noise) and incorporates masks to create patches of various shapes, not limited to squares. To preserve the original semantics during the diffusion process, we employ Null-text inversion to map random noise samples to a single input image and generate patches through Incomplete Diffusion Optimization (IDO). Our method achieves attack performance comparable to state-of-the-art non-naturalistic patches while maintaining a natural appearance. Using DiffPatch, we construct AdvT-shirt-1K, the first physical adversarial T-shirt dataset comprising over a thousand images captured in diverse scenarios. AdvT-shirt-1K can serve as a useful dataset for training or testing future defense methods.

Summary

We haven't generated a summary for this paper yet.