Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Relation-Aware Meta-Learning for Zero-shot Sketch-Based Image Retrieval (2412.00120v1)

Published 28 Nov 2024 in cs.CV and cs.AI

Abstract: Sketch-based image retrieval (SBIR) relies on free-hand sketches to retrieve natural photos within the same class. However, its practical application is limited by its inability to retrieve classes absent from the training set. To address this limitation, the task has evolved into Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR), where model performance is evaluated on unseen categories. Traditional SBIR primarily focuses on narrowing the domain gap between photo and sketch modalities. However, in the zero-shot setting, the model not only needs to address this cross-modal discrepancy but also requires a strong generalization capability to transfer knowledge to unseen categories. To this end, we propose a novel framework for ZS-SBIR that employs a pair-based relation-aware quadruplet loss to bridge feature gaps. By incorporating two negative samples from different modalities, the approach prevents positive features from becoming disproportionately distant from one modality while remaining close to another, thus enhancing inter-class separability. We also propose a Relation-Aware Meta-Learning Network (RAMLN) to obtain the margin, a hyper-parameter of cross-modal quadruplet loss, to improve the generalization ability of the model. RAMLN leverages external memory to store feature information, which it utilizes to assign optimal margin values. Experimental results obtained on the extended Sketchy and TU-Berlin datasets show a sharp improvement over existing state-of-the-art methods in ZS-SBIR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube