Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for High-dimensional Quantile Regression with Distribution Shift (2411.19933v1)

Published 29 Nov 2024 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: Information from related source studies can often enhance the findings of a target study. However, the distribution shift between target and source studies can severely impact the efficiency of knowledge transfer. In the high-dimensional regression setting, existing transfer approaches mainly focus on the parameter shift. In this paper, we focus on the high-dimensional quantile regression with knowledge transfer under three types of distribution shift: parameter shift, covariate shift, and residual shift. We propose a novel transferable set and a new transfer framework to address the above three discrepancies. Non-asymptotic estimation error bounds and source detection consistency are established to validate the availability and superiority of our method in the presence of distribution shift. Additionally, an orthogonal debiased approach is proposed for statistical inference with knowledge transfer, leading to sharper asymptotic results. Extensive simulation results as well as real data applications further demonstrate the effectiveness of our proposed procedure.

Summary

We haven't generated a summary for this paper yet.