Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Evaluation of Single-step Explicit Exponential Integration Methods on Stiff Ordinary Differential Equations (2411.19374v1)

Published 28 Nov 2024 in math.NA, cs.NA, cs.SY, and eess.SY

Abstract: Stiff systems of ordinary differential equations (ODEs) arise in a wide range of scientific and engineering disciplines and are traditionally solved using implicit integration methods due to their stability and efficiency. However, these methods are computationally expensive, particularly for applications requiring repeated integration, such as parameter estimation, Bayesian inference, neural ODEs, physics-informed neural networks, and MeshGraphNets. Explicit exponential integration methods have been proposed as a potential alternative, leveraging the matrix exponential to address stiffness without requiring nonlinear solvers. This study evaluates several state-of-the-art explicit single-step exponential schemes against classical implicit methods on benchmark stiff ODE problems, analyzing their accuracy, stability, and scalability with step size. Despite their initial appeal, our results reveal that explicit exponential methods significantly lag behind implicit schemes in accuracy and scalability for stiff ODEs. The backward Euler method consistently outperformed higher-order exponential methods in accuracy at small step sizes, with none surpassing the accuracy of the first-order integrating factor Euler method. Exponential methods fail to improve upon first-order accuracy, revealing the integrating factor Euler method as the only reliable choice for repeated, inexpensive integration in applications such as neural ODEs and parameter estimation. This study exposes the limitations of explicit exponential methods and calls for the development of improved algorithms.

Summary

We haven't generated a summary for this paper yet.