Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pretrained LLM Adapted with LoRA as a Decision Transformer for Offline RL in Quantitative Trading (2411.17900v1)

Published 26 Nov 2024 in q-fin.CP

Abstract: Developing effective quantitative trading strategies using reinforcement learning (RL) is challenging due to the high risks associated with online interaction with live financial markets. Consequently, offline RL, which leverages historical market data without additional exploration, becomes essential. However, existing offline RL methods often struggle to capture the complex temporal dependencies inherent in financial time series and may overfit to historical patterns. To address these challenges, we introduce a Decision Transformer (DT) initialized with pre-trained GPT-2 weights and fine-tuned using Low-Rank Adaptation (LoRA). This architecture leverages the generalization capabilities of pre-trained LLMs and the efficiency of LoRA to learn effective trading policies from expert trajectories solely from historical data. Our model performs competitively with established offline RL algorithms, including Conservative Q-Learning (CQL), Implicit Q-Learning (IQL), and Behavior Cloning (BC), as well as a baseline Decision Transformer with randomly initialized GPT-2 weights and LoRA. Empirical results demonstrate that our approach effectively learns from expert trajectories and secures superior rewards in certain trading scenarios, highlighting the effectiveness of integrating pre-trained LLMs and parameter-efficient fine-tuning in offline RL for quantitative trading. Replication code for our experiments is publicly available at https://github.com/syyunn/finrl-dt

Summary

We haven't generated a summary for this paper yet.