Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Invariant neuromorphic representations of tactile stimuli improve robustness of a real-time texture classification system (2411.17060v1)

Published 26 Nov 2024 in cs.RO and eess.SP

Abstract: Humans have an exquisite sense of touch which robotic and prosthetic systems aim to recreate. We developed algorithms to create neuron-like (neuromorphic) spiking representations of texture that are invariant to the scanning speed and contact force applied in the sensing process. The spiking representations are based on mimicking activity from mechanoreceptors in human skin and further processing up to the brain. The neuromorphic encoding process transforms analog sensor readings into speed and force invariant spiking representations in three sequential stages: the force invariance module (in the analog domain), the spiking activity encoding module (transforms from analog to spiking domain), and the speed invariance module (in the spiking domain). The algorithms were tested on a tactile texture dataset collected in 15 speed-force conditions. An offline texture classification system built on the invariant representations has higher classification accuracy, improved computational efficiency, and increased capability to identify textures explored in novel speed-force conditions. The speed invariance algorithm was adapted to a real-time human-operated texture classification system. Similarly, the invariant representations improved classification accuracy, computational efficiency, and capability to identify textures explored in novel conditions. The invariant representation is even more crucial in this context due to human imprecision which seems to the classification system as a novel condition. These results demonstrate that invariant neuromorphic representations enable better performing neurorobotic tactile sensing systems. Furthermore, because the neuromorphic representations are based on biological processing, this work can be used in the future as the basis for naturalistic sensory feedback for upper limb amputees.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube