Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

The Tits construction for short $\mathfrak{sl}_2$-super-structures (2411.17031v1)

Published 26 Nov 2024 in math.RT and math.QA

Abstract: In this paper, we generalize the Tits construction for Lie superalgebras such that $\mathfrak{sl}_2$ acts by even derivations and decompose, as $\mathfrak{sl}_2$-module, into a direct sum of copies of the adjoint, the natural and the trivial representations. This construction generalizes the one provided by Elduque et al in \cite{EBCC23}, and it is possible to described the $\mathfrak{sl}_2$-Lie superstructure in terms of $\mathcal{J}$-ternary superalgebras as a super version of the defined by Allison. We extend the Tits-Kantor-Koecher construction and the Tits-Allison-Gao functor that define a short $\mathfrak{sl}_2$-Lie superalgebra from a $\mathcal{J}$-ternary superalgebra $(\mathcal{J},\mathcal{M})$. Our setting includes and generalizes both \cite{EBCC23} and Shang's \cite{S22}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.