Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpreting Language Reward Models via Contrastive Explanations (2411.16502v2)

Published 25 Nov 2024 in cs.LG and cs.AI

Abstract: Reward models (RMs) are a crucial component in the alignment of LLMs' (LLMs) outputs with human values. RMs approximate human preferences over possible LLM responses to the same prompt by predicting and comparing reward scores. However, as they are typically modified versions of LLMs with scalar output heads, RMs are large black boxes whose predictions are not explainable. More transparent RMs would enable improved trust in the alignment of LLMs. In this work, we propose to use contrastive explanations to explain any binary response comparison made by an RM. Specifically, we generate a diverse set of new comparisons similar to the original one to characterise the RM's local behaviour. The perturbed responses forming the new comparisons are generated to explicitly modify manually specified high-level evaluation attributes, on which analyses of RM behaviour are grounded. In quantitative experiments, we validate the effectiveness of our method for finding high-quality contrastive explanations. We then showcase the qualitative usefulness of our method for investigating global sensitivity of RMs to each evaluation attribute, and demonstrate how representative examples can be automatically extracted to explain and compare behaviours of different RMs. We see our method as a flexible framework for RM explanation, providing a basis for more interpretable and trustworthy LLM alignment.

Summary

We haven't generated a summary for this paper yet.