Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning Enhancing Entanglement for Two-Photon-Driven Rabi Model (2411.15841v4)

Published 24 Nov 2024 in quant-ph

Abstract: A control scheme is proposed that leverages reinforcement learning to enhance entanglement by modulating the two-photon-driven amplitude in a Rabi model. The quantum phase diagram versus the amplitude of the two-photon process and the coupling between the cavity field and the atom in the Rabi model, is indicated by the energy spectrum of the hybrid system, the witness of entanglement, second order correlation, and negativity of Wigner function. From a dynamical perspective, the behavior of entanglement can reflect the phase transition and the reinforcement learning agent is employed to produce temporal sequences of control pulses to enhance the entanglement in the presence of dissipation. The entanglement can be enhanced in different parameter regimes and the control scheme exhibits robustness against dissipation. The replaceability of the controlled system and the reinforcement learning module demonstrates the generalization of this scheme. This research paves the way of positively enhancing quantum resources in non-equilibrium systems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com