Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ACE: Action Concept Enhancement of Video-Language Models in Procedural Videos (2411.15628v1)

Published 23 Nov 2024 in cs.CV

Abstract: Vision-LLMs (VLMs) are capable of recognizing unseen actions. However, existing VLMs lack intrinsic understanding of procedural action concepts. Hence, they overfit to fixed labels and are not invariant to unseen action synonyms. To address this, we propose a simple fine-tuning technique, Action Concept Enhancement (ACE), to improve the robustness and concept understanding of VLMs in procedural action classification. ACE continually incorporates augmented action synonyms and negatives in an auxiliary classification loss by stochastically replacing fixed labels during training. This creates new combinations of action labels over the course of fine-tuning and prevents overfitting to fixed action representations. We show the enhanced concept understanding of our VLM, by visualizing the alignment of encoded embeddings of unseen action synonyms in the embedding space. Our experiments on the ATA, IKEA and GTEA datasets demonstrate the efficacy of ACE in domains of cooking and assembly leading to significant improvements in zero-shot action classification while maintaining competitive performance on seen actions.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com