Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous and discrete-time accelerated methods for an inequality constrained convex optimization problem (2411.14828v1)

Published 22 Nov 2024 in math.OC

Abstract: This paper is devoted to the study of acceleration methods for an inequality constrained convex optimization problem by using Lyapunov functions. We first approximate such a problem as an unconstrained optimization problem by employing the logarithmic barrier function. Using the Hamiltonian principle, we propose a continuous-time dynamical system associated with a Bregman Lagrangian for solving the unconstrained optimization problem. Under certain conditions, we demonstrate that this continuous-time dynamical system exponentially converges to the optimal solution of the inequality constrained convex optimization problem. Moreover, we derive several discrete-time algorithms from this continuous-time framework and obtain their optimal convergence rates. Finally, we present numerical experiments to validate the effectiveness of the proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com