Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Space-time model reduction in the frequency domain (2411.13531v1)

Published 20 Nov 2024 in math.NA, cs.NA, and physics.flu-dyn

Abstract: Most model reduction methods are space-only in that they reduce the spatial dimension of the solution but not the temporal one. These methods integrate an encoding of the state of the nonlinear dynamical system forward in time. We propose a space-time method -- one that solves a system of algebraic equations for the encoding of the trajectory, i.e., the solution on a time interval $[0,T]$. The benefit of this approach is that with the same total number of degrees of freedom, a space-time encoding can leverage spatiotemporal correlations to represent the trajectory far more accurately than a space-only one. We use spectral proper orthogonal decomposition (SPOD) modes, a spatial basis at each temporal frequency tailored to the structures that appear at that frequency, to represent the trajectory. These modes have a number of properties that make them an ideal choice for space-time model reduction. We derive an algebraic system involving the SPOD coefficients that represent the solution, as well as the initial condition and the forcing. The online phase of the method consists of solving this system for the SPOD coefficients given the initial condition and forcing. We test the model on a Ginzburg-Landau system, a $1 + 1$ dimensional nonlinear PDE. We find that the proposed method is $\sim 2$ orders of magnitude more accurate than POD-Galerkin at the same number of modes and CPU time for all of our tests. In fact, the method is substantially more accurate even than the projection of the solution onto the POD modes, which is a lower bound for the error of any space-only Petrov-Galerkin method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com