Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Forward Stepwise Regression (2411.12294v1)

Published 19 Nov 2024 in stat.ME

Abstract: This paper proposes a sparse regression method that continuously interpolates between Forward Stepwise selection (FS) and the LASSO. When tuned appropriately, our solutions are much sparser than typical LASSO fits but, unlike FS fits, benefit from the stabilizing effect of shrinkage. Our method, Adaptive Forward Stepwise Regression (AFS) addresses this need for sparser models with shrinkage. We show its connection with boosting via a soft-thresholding viewpoint and demonstrate the ease of adapting the method to classification tasks. In both simulations and real data, our method has lower mean squared error and fewer selected features across multiple settings compared to popular sparse modeling procedures.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com