Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Conceptwm: A Diffusion Model Watermark for Concept Protection (2411.11688v2)

Published 18 Nov 2024 in cs.CR, cs.AI, and cs.MM

Abstract: The personalization techniques of diffusion models succeed in generating specific concepts but also pose threats to copyright protection and illegal use. Model Watermarking is an effective method to prevent the unauthorized use of subject-driven or style-driven image generation, safeguarding concept copyrights. However, under the goal of concept-oriented protection, current watermarking schemes typically add watermarks to all images rather than applying them in a refined manner targeted at specific concepts. Additionally, the personalization techniques of diffusion models can easily remove watermarks. Existing watermarking methods struggle to achieve fine-grained watermark embedding with a few images of specific concept and prevent removal of watermarks through personalized fine-tuning. Therefore, we introduce a novel concept-oriented watermarking framework that seamlessly embeds imperceptible watermarks into the concept of diffusion models. We introduce Fidelity-preserving Latent Watermarking (FLW) to generate latent watermarks based on image characteristics and the Adversarial Watermarking Modulation module to prevent "jailbreaking" via personalized finetuning. To enhance U-Net's efficiency in learning watermark patterns with limited samples, we propose Efficient Concept Watermark Finetuning, which alternates optimization of model parameters for both watermark embedding and concept learning. We conduct extensive experiments and ablation studies to verify our framework. Our code is available at https://anonymous.4open.science/r/Conceptwm-4EB3/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube