Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Tropical combinatorics of max-linear Bayesian networks (2411.10394v3)

Published 15 Nov 2024 in math.CO, math.AG, math.ST, and stat.TH

Abstract: A polytrope is a tropical polyhedron that is also classically convex. We study the tropical combinatorial types of polytropes associated to weighted directed acyclic graphs (DAGs). This family of polytropes arises in algebraic statistics when describing the model class of max-linear Bayesian networks. We show how the edge weights of a network directly relate to the facet structure of the corresponding polytrope. We also give a classification of polytropes from weighted DAGs at different levels of equivalence. These results give insight on the statistical problem of identifiability for a max-linear Bayesian network.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com