Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Maximum entropy inference of reaction-diffusion models (2411.09880v1)

Published 15 Nov 2024 in cond-mat.stat-mech

Abstract: Reaction-diffusion equations are commonly used to model a diverse array of complex systems, including biological, chemical, and physical processes. Typically, these models are phenomenological, requiring the fitting of parameters to experimental data. In the present work, we introduce a novel formalism to construct reaction-diffusion models that is grounded in the principle of maximum entropy. This new formalism aims to incorporate various types of experimental data, including ensemble currents, distributions at different points in time, or moments of such. To this end, we expand the framework of Schr\"odinger bridges and Maximum Caliber problems to nonlinear interacting systems. We illustrate the usefulness of the proposed approach by modeling the evolution of (i) a morphogen across the fin of a zebrafish and (ii) the population of two varieties of toads in Poland, so as to match the experimental data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.