Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ozone level forecasting in Mexico City with temporal features and interactions (2411.07259v1)

Published 4 Nov 2024 in cs.LG and stat.AP

Abstract: Tropospheric ozone is an atmospheric pollutant that negatively impacts human health and the environment. Precise estimation of ozone levels is essential for preventive measures and mitigating its effects. This work compares the accuracy of multiple regression models in forecasting ozone levels in Mexico City, first without adding temporal features and interactions, and then with these features included. Our findings show that incorporating temporal features and interactions improves the accuracy of the models.

Summary

We haven't generated a summary for this paper yet.