Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stein-Weiss problems via nonlinear Rayleigh quotient for concave-convex nonlinearities (2411.06168v1)

Published 9 Nov 2024 in math.AP

Abstract: In the present work, we consider existence and multiplicity of positive solutions for nonlocal elliptic problems driven by the Stein-Weiss problem with concave-convex nonlinearities defined in the whole space $\mathbb{R}N$. More precisely, we consider the following nonlocal elliptic problem: \begin{equation*} - \Delta u + V(x)u = \lambda a(x) |u|{q-2} u + \displaystyle \int \limits_{\mathbb{R}N}\frac{b(y)\vert u(y) \vertp dy}{\vert x\vert\alpha\vert x-y\vert\mu \vert y\vert\alpha} b(x)\vert u\vert{p-2}u, \,\, \hbox{in}\ \mathbb{R}N, \,\, u\in H1(\mathbb{R}N), \end{equation*} where $\lambda >0, \alpha \in (0,N), N\geq3, 0<\mu<N, 0 < \mu + 2 \alpha < N$. Furthermore, we assume also that $V: \mathbb{R}^N \to \mathbb{R}$ is a bounded potential, $a \in{L}^r(\mathbb{R}^N), a > 0$ in $\mathbb{R}N$ and $b\in{L}{t}(\mathbb{R}N), b>0$ in $\mathbb{R}N$ for some specific $r, t > 1$. We assume also that $1\leq q<2$ and $2_{\alpha,\mu} < p<2_{\alpha,\mu}*$ where $2_{\alpha ,\mu}=(2N-2\alpha-\mu)/N$ and $2_{\alpha,\mu}*= (2N-2\alpha-\mu)/(N-2)$. Our main contribution is to find the largest $\lambda* > 0$ in such way that our main problem admits at least two positive solutions for each $\lambda \in (0, \lambda*)$. In order to do that we apply the nonlinear Rayleigh quotient together with the Nehari method. Moreover, we prove a Brezis-Lieb type Lemma and a regularity result taking into account our setting due to the potentials $a, b : \mathbb{R}N \to \mathbb{R}$.

Summary

We haven't generated a summary for this paper yet.