Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Powder Diffraction-AI Solution for Crystalline Structure (2411.06062v1)

Published 9 Nov 2024 in cond-mat.mtrl-sci

Abstract: Determining the atomic-level structure of crystalline solids is critically important across a wide array of scientific disciplines. The challenges associated with obtaining samples suitable for single-crystal diffraction, coupled with the limitations inherent in classical structure determination methods that primarily utilize powder diffraction for most polycrystalline materials, underscore an urgent need to develop alternative approaches for elucidating the structures of commonly encountered crystalline compounds. In this work, we present an artificial intelligence-directed leapfrog model capable of accurately determining the structures of both organic and inorganic-organic hybrid crystalline solids through direct analysis of powder X-ray diffraction data. This model not only offers a comprehensive solution that effectively circumvents issues related to insoluble challenges in conventional structure solution methodologies but also demonstrates applicability to crystal structures across all conceivable space groups. Furthermore, it exhibits notable compatibility with routine powder diffraction data typically generated by standard instruments, featuring rapid data collection and normal resolution levels.

Summary

We haven't generated a summary for this paper yet.