Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Identifying and Decomposing Compound Ingredients in Meal Plans Using Large Language Models (2411.05892v1)

Published 8 Nov 2024 in cs.CL, cs.AI, and cs.IR

Abstract: This study explores the effectiveness of LLMs in meal planning, focusing on their ability to identify and decompose compound ingredients. We evaluated three models-GPT-4o, Llama-3 (70b), and Mixtral (8x7b)-to assess their proficiency in recognizing and breaking down complex ingredient combinations. Preliminary results indicate that while Llama-3 (70b) and GPT-4o excels in accurate decomposition, all models encounter difficulties with identifying essential elements like seasonings and oils. Despite strong overall performance, variations in accuracy and completeness were observed across models. These findings underscore LLMs' potential to enhance personalized nutrition but highlight the need for further refinement in ingredient decomposition. Future research should address these limitations to improve nutritional recommendations and health outcomes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.