Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust estimation for high-dimensional time series with heavy tails (2411.05217v1)

Published 7 Nov 2024 in math.ST and stat.TH

Abstract: We study in this paper the problem of least absolute deviation (LAD) regression for high-dimensional heavy-tailed time series which have finite $\alpha$-th moment with $\alpha \in (1,2]$. To handle the heavy-tailed dependent data, we propose a Catoni type truncated minimization problem framework and obtain an $\mathcal{O}\big( \big( (d_1+d_2) (d_1\land d_2) \log2 n / n \big){(\alpha - 1)/\alpha} \big)$ order excess risk, where $d_1$ and $d_2$ are the dimensionality and $n$ is the number of samples. We apply our result to study the LAD regression on high-dimensional heavy-tailed vector autoregressive (VAR) process. Simulations for the VAR($p$) model show that our new estimator with truncation are essential because the risk of the classical LAD has a tendency to blow up. We further apply our estimation to the real data and find that ours fits the data better than the classical LAD.

Summary

We haven't generated a summary for this paper yet.