Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Proof of the absence of local conserved quantities in the spin-1 bilinear-biquadratic chain and its anisotropic extensions (2411.04945v2)

Published 7 Nov 2024 in cond-mat.stat-mech, math-ph, math.MP, and quant-ph

Abstract: We provide a complete classification of the integrability and nonintegrability of the spin-1 bilinear-biquadratic model with a uniaxial anisotropic field, which includes the Heisenberg model and the Affleck-Kennedy-Lieb-Tasaki model. It is rigorously shown that all systems, except for the known integrable systems, are nonintegrable, meaning that they do not have nontrivial local conserved quantities. In particular, this result guarantees the nonintegrability of the Affleck-Kennedy-Lieb-Tasaki model, which is a fundamental assumption for quantum many-body scarring. Furthermore, we give simple necessary conditions for integrability in an extended model of the bilinear-biquadratic model with anisotropic interactions. Our result has accomplished a breakthrough in nonintegrability proofs by expanding their scope to spin-1 systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com