2000 character limit reached
Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on slice spaces (2411.03830v1)
Published 6 Nov 2024 in math.FA
Abstract: Let $0<t<\infty$, $0<\alpha<n$, $1<p<r<\infty$ and $1<q<s<\infty$. In this paper, we prove that $b\in B M O\left(\mathbb{R}{n}\right)$ if and only if the commutator $[b, T_{\Omega,\alpha}]$ generated by the fractional integral operator with the rough kernel $T_{\Omega,\alpha}$ and the locally integrable function $b$ is bounded from the slice space $(E_{p}{q})_{t}(\mathbb{R}{n})$ to $(E_{r}{s})_{t}(\mathbb{R}{n})$. Meanwhile, we also show that $b\in Lip_\beta(\mathbb{R}{n}) $($0<\beta<1)$ if and only if the commutator $\left[b, T_{\Omega,\alpha}\right]$ is bounded from $(E_{p}{q})_{t}(\mathbb{R}{n})$ to $(E_{r}{s})_{t}(\mathbb{R}{n})$.