Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where Assessment Validation and Responsible AI Meet (2411.02577v1)

Published 4 Nov 2024 in cs.CY

Abstract: Validity, reliability, and fairness are core ethical principles embedded in classical argument-based assessment validation theory. These principles are also central to the Standards for Educational and Psychological Testing (2014) which recommended best practices for early applications of AI in high-stakes assessments for automated scoring of written and spoken responses. Responsible AI (RAI) principles and practices set forth by the AI ethics community are critical to ensure the ethical use of AI across various industry domains. Advances in generative AI have led to new policies as well as guidance about the implementation of RAI principles for assessments using AI. Building on Chapelle's foundational validity argument work to address the application of assessment validation theory for technology-based assessment, we propose a unified assessment framework that considers classical test validation theory and assessment-specific and domain-agnostic RAI principles and practice. The framework addresses responsible AI use for assessment that supports validity arguments, alignment with AI ethics to maintain human values and oversight, and broader social responsibility associated with AI use.

Summary

We haven't generated a summary for this paper yet.