Coronas and strongly self-absorbing C*-algebras (2411.02274v2)
Abstract: Let $\mathcal D$ be a strongly self-absorbing $\mathrm{C}*$-algebra. Given any separable $\mathrm{C}*$-algebra $A$, our two main results assert the following. If $A$ is $\mathcal D$-stable, then the corona algebra of $A$ is $\mathcal D$-saturated, i.e., $\mathcal D$ embeds unitally into the relative commutant of every separable $\mathrm{C}*$-subalgebra. Conversely, assuming that the stable corona of $A$ is separably $\mathcal D$-stable, we prove that $A$ is $\mathcal D$-stable. This generalizes recent work by the first-named author on the structure of the Calkin algebra. As an immediate corollary, it follows that the multiplier algebra of a separable $\mathcal D$-stable $\mathrm{C}*$-algebra is separably $\mathcal D$-stable. Appropriate versions of the aforementioned results are also obtained when $A$ is not necessarily separable. The article ends with some non-trivial applications.
- W. Arveson. Notes on extensions of C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Duke Math. J., 44:329–355, 1977.
- Kazhdan’s property (T). Cambridge University Press, 2008.
- Model theory for metric structures. In Z. Chatzidakis et al., editors, Model Theory with Applications to Algebra and Analysis, Vol. II, number 350 in London Math. Soc. Lecture Notes Series, pages 315–427. London Math. Soc., 2008.
- B. Blackadar. Operator algebras, volume 122 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin, 2006. Theory of C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
- Covering dimension of C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras and 2-coloured classification. Mem. Amer. Math. Soc., 257(1233):vii+97, 2019.
- N. Brown and N. Ozawa. C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras and finite-dimensional approximations, volume 88 of Grad. Stud. Math. American Mathematical Society, Providence, RI, 2008.
- Tracially complete C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Preprint arXiv:2310.20594.
- Classifying ∗*∗-homomorphisms I: unital simple nuclear C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Preprint arXiv:2307.06480v3.
- J. Castillejos and S. Evington. Stabilising uniform property Gamma. Proc. Amer. Math. Soc., 149:4725–4737, 2021.
- Nuclear dimension of simple C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Invent. Math., 224:245–290, 2021.
- Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- J. Cuntz. Simple C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras generated by isometries. Comm. Math. Phys., 57(2):173–185, 1977.
- E. G. Effros and J. Rosenberg. C*-algebras with approximately inner flip. Pacific J. Math, 77(2):417–443, 1978.
- G. A. Elliott. Derivations of matroid C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. II. Ann. Math., 100(2):407–422, 1974.
- G. A. Elliott and Z. Niu. The C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebra of a minimal homeomorphism of zero mean dimension. Duke Math. J., 166(18):3569–3594, 2017.
- Regularity properties in the classification program for separable amenable C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Bull. Amer. Math. Soc., 45:229–245, 2008.
- I. Farah. Combinatorial Set Theory and C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Springer Monogr. Math. Springer, 2019.
- I. Farah. The Calkin algebra, Kazhdan’s property (T), and strongly self-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Proc. London Math. Soc., 127(6):1749–1774, 2023.
- Corona Rigidity. Preprint arXiv:2201.11618.
- Model theory of C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Mem. Amer. Math. Soc., 271(1324):viii+127, 2021.
- Relative commutants of strongly self-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Selecta Math., 23(1):363–387, 2017.
- M. Foreman and A. Kanamori. Handbook of set theory. Springer Science & Business Media, 2009.
- Dynamical comparison and 𝒵𝒵\mathcal{Z}caligraphic_Z-stability for crossed products of simple C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Adv. Math., 438, 2024. Article 109471.
- S. Ghasemi. SAW* algebras are essentially non-factorizable. Glasg. Math. J., 57(1):1–5, 2015.
- A classification of finite simple amenable 𝒵𝒵\mathcal{Z}caligraphic_Z-stable C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, I: C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras with generalized tracial rank one. C. R. Math. Rep. Acad. Sci. Canada, 42(3):63–450, 2020.
- A classification of finite simple amenable 𝒵𝒵\mathcal{Z}caligraphic_Z-stable C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, II: C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras with rational generalized tracial rank one. C. R. Math. Rep. Acad. Sci. Canada, 42(4):451–539, 2020.
- N. Higson and J. Roe. Analytic K-homology. Oxford Math. Monogr. Oxford University Press, 2000.
- Rokhlin dimension for flows. Comm. Math. Phys., 353:253–316, 2017.
- X. Jiang. Nonstable K-theory for 𝒵𝒵\mathcal{Z}caligraphic_Z-stable C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. 1999. Preprint arXiv:math/9707228.
- X. Jiang and H. Su. On a simple unital projectionless C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebra. Amer. J. Math., 121(2):359–413, 1999.
- Strict comparison of positive elements in multiplier algebras. Canad. J. Math., 69(2):373–407, 2017.
- D. Kerr. Dimension, comparison, and almost finiteness. J. Eur. Math. Soc., 22(11):3697–3745, 2020.
- D. Kerr and G. Szabó. Almost finiteness and the small boundary property. Comm. Math. Phys., 374:1–31, 2020.
- E. Kirchberg. The Classification of Purely Infinite C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-Algebras Using Kasparov’s Theory. Preprint. https://www.uni-muenster.de/imperia/md/content/MathematicsMuenster/ekneu1.pdf.
- E. Kirchberg. Exact C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, tensor products, and the classification of purely infinite algebras. In Proc. Intern. Congr. Math., pages 943–954, 1995.
- E. Kirchberg. Central sequences in C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras and strongly purely infinite algebras. In Operator Algebras: The Abel Symposium 2004, volume 1 of Abel Symp., pages 175–231. Springer, Berlin, 2006.
- E. Kirchberg and N. C. Phillips. Embedding of exact C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras in the Cuntz algebra 𝒪2subscript𝒪2\mathcal{O}_{2}caligraphic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. J. reine angew. Math., 525:17–53, 2000.
- M. Magidor and S. Shelah. When does almost free imply free? (For groups, transversals, etc.). JAMS, 7(4):769–830, 1994.
- V. Manuilov and K. Thomsen. E-theory is a special case of KK-theory. Proc. London Math. Soc., 88:455–478, 2004.
- H. Matui and Y. Sato. Strict comparison and 𝒵𝒵\mathcal{Z}caligraphic_Z-absorption of nuclear C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Acta Math., 209:179–196, 2012.
- H. Matui and Y. Sato. Decomposition rank of UHF-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Duke Math. J., 163(14):2687–2708, 2014.
- D. McDuff. Central sequences and the hyperfinite factor. Proc. Lond. Math. Soc., 20:443–461, 1970.
- P. Naryshkin. Group extensions preserve almost finiteness. J. Funct. Anal., 286(7), 2024. Article 110348.
- N. C. Phillips. A classification theorem for nuclear purely infinite simple C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Doc. Math., 5:49–114, 2000.
- M. Rørdam. Classification of nuclear C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, volume 126 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin, 2002.
- M. Rørdam. The stable and the real rank of 𝒵𝒵{\mathcal{Z}}caligraphic_Z-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Internat. J. Math., 15(10):1065–1084, 2004.
- S. Sakai. Derivations of simple C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, III. Tohoku Math. Journal, 23(3):559–564, 1971.
- C. Schafhauser. KK-rigidity of simple nuclear C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Preprint arXiv:2408.02745.
- C. Schafhauser. A new proof of the Tikuisis–White–Winter theorem. J. reine angew. Math, 759:291–304, 2020.
- C. Schafhauser. Subalgebras of simple AF-algebras. Ann. Math., 192(2):309–352, 2020.
- A. Tikuisis. Nuclear dimension, 𝒵𝒵\mathcal{Z}caligraphic_Z-stability, and algebraic simplicity for stably projectionless C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Math. Ann., 358:729–778, 2014.
- Quasidiagonality of nuclear C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Ann. Math., 185(2):229–284, 2017.
- A. S. Toms and W. Winter. Minimal dynamics and K𝐾Kitalic_K-theoretic rigidity: Elliott’s conjecture. GAFA, 23:467–481, 2013.
- A.S. Toms and W. Winter. Strongly self-absorbing C∗superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Trans. Amer. Math. Soc., 359(8):3999–4029, 2007.
- S. Wassermann. C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras associated with groups with Kazhdan’s property T. Ann. Math., 134(2):423–431, 1991.
- W. Winter. Decomposition rank and 𝒵𝒵\mathcal{Z}caligraphic_Z-stability. Invent. Math., 179(2):229–301, 2010.
- W. Winter. Strongly self-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras are 𝒵𝒵{\mathcal{Z}}caligraphic_Z-stable. J. Noncommut. Geom., 5(2):253–264, 2011.
- W. Winter. Nuclear dimension and 𝒵𝒵\mathcal{Z}caligraphic_Z-stability of pure C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. Invent. Math., 187(2):259–342, 2012.
- W. Winter. Localizing the Elliott conjecture at strongly self-absorbing C∗superscriptC\mathrm{C}^{*}roman_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, with an appendix by H. Lin. J. reine angew. Math., 692:193–231, 2014.
- W. Winter. QDQ vs. UCT. In Operator algebras and applications – the Abel Symposium, volume 12, pages 327–348, 2017.