Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quandle Cohomology Quiver Representations (2411.02153v2)

Published 4 Nov 2024 in math.GT and math.QA

Abstract: We define a family of quiver representation-valued invariants of oriented classical and virtual knots and links associated to a choice of finite quandle $X$, abelian group $A$, set of quandle 2-cocycles $C\subset H2_Q(x;A)$, choice of coefficient ring $k$ and set of quandle endomorphisms $S\subset \mathrm{Hom}(X,X)$. From this representation we define four new polynomial (or ``polynomial'' depending on $A$) invariants. We generalize to the case of biquandles and compute some examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. D. Bar-Natan. The knot atlas http://katlas.org/wiki/Main_Page.
  2. State-sum invariants of knotted curves and surfaces from quandle cohomology. Electron. Res. Announc. Amer. Math. Soc., 5:146–156 (electronic), 1999.
  3. Diagrammatic computations for quandles and cocycle knot invariants. In Diagrammatic morphisms and applications (San Francisco, CA, 2000), volume 318 of Contemp. Math., pages 51–74. Amer. Math. Soc., Providence, RI, 2003.
  4. Psyquandle coloring quivers. arXiv:2107.05668, 2021.
  5. K. Cho and S. Nelson. Quandle cocycle quivers. Topology Appl., 268:106908, 10, 2019.
  6. K. Cho and S. Nelson. Quandle coloring quivers. Journal of Knot Theory and Its Ramifications, 28(01):1950001, 2019.
  7. M. Elhamdadi and S. Nelson. Quandles—an introduction to the algebra of knots, volume 74 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2015.
  8. P. C. Falkenburg and S. Nelson. Biquandle bracket quivers. J. Knot Theory Ramifications (to appear), 2023.
  9. K. Istanbouli and S. Nelson. Quandle module quivers. J. Knot Theory Ramifications, 29(12):2050084, 14, 2020.
  10. D. Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra, 23(1):37–65, 1982.
  11. L. H. Kauffman. Virtual knot theory. European J. Combin., 20(7):663–690, 1999.
  12. A. Kazakov. The state-sum invariants for virtual knots.
  13. S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88, 160, 1982.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com