Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Linear Regression: Sequential Convex Relaxation, Robust Restricted Null Space Property, and Variable Selection (2411.01237v1)

Published 2 Nov 2024 in math.ST and stat.TH

Abstract: For high dimensional sparse linear regression problems, we propose a sequential convex relaxation algorithm (iSCRA-TL1) by solving inexactly a sequence of truncated $\ell_1$-norm regularized minimization problems, in which the working index sets are constructed iteratively with an adaptive strategy. We employ the robust restricted null space property and sequential restricted null space property (rRNSP and rSRNSP) to provide the theoretical certificates of iSCRA-TL1. Specifically, under a mild rRNSP or rSRNSP, iSCRA-TL1 is shown to identify the support of the true $r$-sparse vector by solving at most $r$ truncated $\ell_1$-norm regularized problems, and the $\ell_1$-norm error bound of its iterates from the oracle solution is also established. As a consequence, an oracle estimator of high-dimensional linear regression problems can be achieved by solving at most $r!+!1$ truncated $\ell_1$-norm regularized problems. To the best of our knowledge, this is the first sequential convex relaxation algorithm to produce an oracle estimator under a weaker NSP condition within a specific number of steps, provided that the Lasso estimator lacks high quality, say, the supports of its first $r$ largest (in modulus) entries do not coincide with those of the true vector.

Summary

We haven't generated a summary for this paper yet.