Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Normalization Layer Per-Example Gradients are Sufficient to Predict Gradient Noise Scale in Transformers (2411.00999v1)

Published 1 Nov 2024 in cs.LG and stat.ML

Abstract: Per-example gradient norms are a vital ingredient for estimating gradient noise scale (GNS) with minimal variance. Observing the tensor contractions required to compute them, we propose a method with minimal FLOPs in 3D or greater tensor regimes by simultaneously computing the norms while computing the parameter gradients. Using this method we are able to observe the GNS of different layers at higher accuracy than previously possible. We find that the total GNS of contemporary transformer models is predicted well by the GNS of only the normalization layers. As a result, focusing only on the normalization layer, we develop a custom kernel to compute the per-example gradient norms while performing the LayerNorm backward pass with zero throughput overhead. Tracking GNS on only those layers, we are able to guide a practical batch size schedule that reduces training time by 18% on a Chinchilla-optimal LLM.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets