Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Enhancing the Traditional Chinese Medicine Capabilities of Large Language Model through Reinforcement Learning from AI Feedback (2411.00897v1)

Published 1 Nov 2024 in cs.CL and cs.AI

Abstract: Although LLMs perform well in understanding and responding to user intent, their performance in specialized domains such as Traditional Chinese Medicine (TCM) remains limited due to lack of expertise. In addition, high-quality data related to TCM is scarce and difficult to obtain, making LLMs ineffective in handling TCM tasks. In this work, we propose a framework to improve the performance of LLMs for TCM tasks using only a small amount of data. First, we use medical case data for supervised fine-tuning of the large model, making it initially capable of performing TCM tasks. Subsequently, we further optimize the model's performance using reinforcement learning from AI feedback (RLAIF) to align it with the preference data. The ablation study also demonstrated the performance gain is attributed to both supervised fine-tuning and the direct policy optimization. The experimental results show that the model trained with a small amount of data achieves a significant performance improvement on a representative TCM task.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.