Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular solutions of the matrix Bochner problem: the $N$-dimensional cases (2411.00798v1)

Published 19 Oct 2024 in math.CA

Abstract: In the theory of matrix-valued orthogonal polynomials, there exists a longstanding problem known as the Matrix Bochner Problem: the classification of all $N \times N$ weight matrices $W(x)$ such that the associated orthogonal polynomials are eigenfunctions of a second-order differential operator. In [4], Casper and Yakimov made an important breakthrough in this area, proving that, under certain hypotheses, every solution to this problem can be obtained as a bispectral Darboux transformation of a direct sum of classical scalar weights. In the present paper, we construct three families of weight matrices $W(x)$ of size $N \times N$, associated with Hermite, Laguerre, and Jacobi weights, which can be considered 'singular' solutions to the Matrix Bochner Problem because they cannot be obtained as a Darboux transformation of classical scalar weights.

Citations (1)

Summary

We haven't generated a summary for this paper yet.