Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Wasserstein Flow Matching: Generative modeling over families of distributions (2411.00698v2)

Published 1 Nov 2024 in cs.LG

Abstract: Generative modeling typically concerns transporting a single source distribution to a target distribution via simple probability flows. However, in fields like computer graphics and single-cell genomics, samples themselves can be viewed as distributions, where standard flow matching ignores their inherent geometry. We propose Wasserstein flow matching (WFM), which lifts flow matching onto families of distributions using the Wasserstein geometry. Notably, WFM is the first algorithm capable of generating distributions in high dimensions, whether represented analytically (as Gaussians) or empirically (as point-clouds). Our theoretical analysis establishes that Wasserstein geodesics constitute proper conditional flows over the space of distributions, making for a valid FM objective. Our algorithm leverages optimal transport theory and the attention mechanism, demonstrating versatility across computational regimes: exploiting closed-form optimal transport paths for Gaussian families, while using entropic estimates on point-clouds for general distributions. WFM successfully generates both 2D & 3D shapes and high-dimensional cellular microenvironments from spatial transcriptomics data. Code is available at https://github.com/DoronHav/WassersteinFlowMatching .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube