One for All: Universal Quantum Conic Programming Framework for Hard-Constrained Combinatorial Optimization Problems (2411.00435v1)
Abstract: We present a unified quantum-classical framework for addressing NP-complete constrained combinatorial optimization problems, generalizing the recently proposed Quantum Conic Programming (QCP) approach. Accordingly, it inherits many favorable properties of the original proposal such as mitigation of the effects of barren plateaus and avoidance of NP-hard parameter optimization. By collecting the entire classical feasibility structure in a single constraint, we enlarge QCP's scope to arbitrary hard-constrained problems. Yet, we prove that the additional restriction is mild enough to still allow for an efficient parameter optimization via the formulation of a generalized eigenvalue problem (GEP) of adaptable dimension. Our rigorous proof further fills some apparent gaps in prior derivations of GEPs from parameter optimization problems. We further detail a measurement protocol for formulating the classical parameter optimization that does not require us to implement any (time evolution with a) problem-specific objective Hamiltonian or a quantum feasibility oracle. Lastly, we prove that, even under the influence of noise, QCP's parameterized ansatz class always captures the optimum attainable within its generated subcone. All of our results hold true for arbitrarily-constrained combinatorial optimization problems.
- Google Quantum AI, Nature 614, 676 (2023).
- PsiQuantum Team, A manufacturable platform for photonic quantum computing (2024), arXiv:2404.17570 [quant-ph] .
- J. Preskill, Quantum 2, 79 (2018).
- L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
- T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
- A. Montanaro, Phys. Rev. Res. 2, 013056 (2020).
- F. G. S. L. Brandão and K. Svore, Quantum Speed-ups for Semidefinite Programming (2017), arXiv:1609.05537 [quant-ph] .
- E. Farhi, J. Goldstone, and S. Gutmann, A Quantum Approximate Optimization Algorithm (2014), arXiv:1411.4028 [quant-ph] .
- L. Bittel and M. Kliesch, Phys. Rev. Lett. 127, 120502 (2021).
- E. Campos, A. Nasrallah, and J. Biamonte, Phys. Rev. A 103, 032607 (2021).
- C. Ortiz Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021).
- A. M. Childs and N. Wiebe, Quantum Info. Comput. 12, 901 (2012).
- S. Chakraborty, Implementing Linear Combination of Unitaries on Intermediate-term Quantum Computers (2023), arXiv:2302.13555 [quanth-ph] .
- A. S. Manne, Oper. Res. 8, 219 (1960).
- A. S. Jain and S. Meeran, Eur. J. Oper. Res. 113, 390 (1999).
- S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley Series in Discrete Mathematics and Optimization (John Wiley & Sons, 1990).
- H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems (Springer, 2004).
- R. E. Tarjan and A. E. Trojanowski, SIAM J. Comput. 6, 537 (1977).
- R. Boppana and M. M. Halldórsson, BIT Numer. Math 32, 180 (1992).
- F. V. Fomin, F. Grandoni, and D. Kratsch, J. ACM 56, 25:1 (2009).
- R. Graham and P. Hell, IEEE Ann. Hist. Comput. 7, 43 (1985).
- R. M. Karp, in Complexity of Computer Computations (Springer US, Boston, MA, 1972) pp. 85–103.
- H. E. Brandt, Prog. Quant. Electron 22, 257 (1999).
- D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2017), arXiv:1412.6980 [cs.LG] .
- P. D. de la Grand’rive and J.-F. Hullo, Knapsack Problem variants of QAOA for battery revenue optimisation (2019), arXiv:1908.02210 [quanth-ph] .
- J. S. Baker and S. K. Radha, Wasserstein Solution Quality and the Quantum Approximate Optimization Algorithm: A Portfolio Optimization Case Study (2022), arXiv:2202.06782 [quant-ph] .
- A. Bärtschi and S. Eidenbenz, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 72–82.
- K. Bharti and T. Haug, Phys. Rev. A 104, 10.1103/physreva.104.l050401 (2021).
- B. Ghojogh, F. Karray, and M. Crowley, Eigenvalue and generalized eigenvalue problems: Tutorial (2019), arXiv:1903.11240 [stat.ML] .
- N. Thoai, J. Optim. Theory Appl. 107, 331 (2000).
- A. Beck and Y. C. Eldar, SIAM J. Optim. 17, 844 (2006).
- D.-V. Nguyen, J. Optim. Theory. Appl. 195, 297 (2022).
- T. Kato, Pertubation Theory for Linear Operators (Springer, Berlin, Heidelberg, 1995).
- M. Plesch and Č. Brukner, Phys. Rev. A 83, 032302 (2011).
- D. Ramacciotti, A. I. Lefterovici, and A. F. Rotundo, Phys. Rev. A 110, 032609 (2024).