Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

One for All: Universal Quantum Conic Programming Framework for Hard-Constrained Combinatorial Optimization Problems (2411.00435v1)

Published 1 Nov 2024 in quant-ph

Abstract: We present a unified quantum-classical framework for addressing NP-complete constrained combinatorial optimization problems, generalizing the recently proposed Quantum Conic Programming (QCP) approach. Accordingly, it inherits many favorable properties of the original proposal such as mitigation of the effects of barren plateaus and avoidance of NP-hard parameter optimization. By collecting the entire classical feasibility structure in a single constraint, we enlarge QCP's scope to arbitrary hard-constrained problems. Yet, we prove that the additional restriction is mild enough to still allow for an efficient parameter optimization via the formulation of a generalized eigenvalue problem (GEP) of adaptable dimension. Our rigorous proof further fills some apparent gaps in prior derivations of GEPs from parameter optimization problems. We further detail a measurement protocol for formulating the classical parameter optimization that does not require us to implement any (time evolution with a) problem-specific objective Hamiltonian or a quantum feasibility oracle. Lastly, we prove that, even under the influence of noise, QCP's parameterized ansatz class always captures the optimum attainable within its generated subcone. All of our results hold true for arbitrarily-constrained combinatorial optimization problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Google Quantum AI, Nature 614, 676 (2023).
  2. PsiQuantum Team, A manufacturable platform for photonic quantum computing (2024), arXiv:2404.17570 [quant-ph] .
  3. J. Preskill, Quantum 2, 79 (2018).
  4. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
  5. T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
  6. A. Montanaro, Phys. Rev. Res. 2, 013056 (2020).
  7. F. G. S. L. Brandão and K. Svore, Quantum Speed-ups for Semidefinite Programming (2017), arXiv:1609.05537 [quant-ph] .
  8. E. Farhi, J. Goldstone, and S. Gutmann, A Quantum Approximate Optimization Algorithm (2014), arXiv:1411.4028 [quant-ph] .
  9. L. Bittel and M. Kliesch, Phys. Rev. Lett. 127, 120502 (2021).
  10. E. Campos, A. Nasrallah, and J. Biamonte, Phys. Rev. A 103, 032607 (2021).
  11. C. Ortiz Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021).
  12. A. M. Childs and N. Wiebe, Quantum Info. Comput. 12, 901 (2012).
  13. S. Chakraborty, Implementing Linear Combination of Unitaries on Intermediate-term Quantum Computers (2023), arXiv:2302.13555 [quanth-ph] .
  14. A. S. Manne, Oper. Res. 8, 219 (1960).
  15. A. S. Jain and S. Meeran, Eur. J. Oper. Res. 113, 390 (1999).
  16. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley Series in Discrete Mathematics and Optimization (John Wiley & Sons, 1990).
  17. H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems (Springer, 2004).
  18. R. E. Tarjan and A. E. Trojanowski, SIAM J. Comput. 6, 537 (1977).
  19. R. Boppana and M. M. Halldórsson, BIT Numer. Math 32, 180 (1992).
  20. F. V. Fomin, F. Grandoni, and D. Kratsch, J. ACM 56, 25:1 (2009).
  21. R. Graham and P. Hell, IEEE Ann. Hist. Comput. 7, 43 (1985).
  22. R. M. Karp, in Complexity of Computer Computations (Springer US, Boston, MA, 1972) pp. 85–103.
  23. H. E. Brandt, Prog. Quant. Electron 22, 257 (1999).
  24. D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2017), arXiv:1412.6980 [cs.LG] .
  25. P. D. de la Grand’rive and J.-F. Hullo, Knapsack Problem variants of QAOA for battery revenue optimisation (2019), arXiv:1908.02210 [quanth-ph] .
  26. J. S. Baker and S. K. Radha, Wasserstein Solution Quality and the Quantum Approximate Optimization Algorithm: A Portfolio Optimization Case Study (2022), arXiv:2202.06782 [quant-ph] .
  27. A. Bärtschi and S. Eidenbenz, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 72–82.
  28. K. Bharti and T. Haug, Phys. Rev. A 104, 10.1103/physreva.104.l050401 (2021).
  29. B. Ghojogh, F. Karray, and M. Crowley, Eigenvalue and generalized eigenvalue problems: Tutorial (2019), arXiv:1903.11240 [stat.ML] .
  30. N. Thoai, J. Optim. Theory Appl. 107, 331 (2000).
  31. A. Beck and Y. C. Eldar, SIAM J. Optim. 17, 844 (2006).
  32. D.-V. Nguyen, J. Optim. Theory. Appl. 195, 297 (2022).
  33. T. Kato, Pertubation Theory for Linear Operators (Springer, Berlin, Heidelberg, 1995).
  34. M. Plesch and Č. Brukner, Phys. Rev. A 83, 032302 (2011).
  35. D. Ramacciotti, A. I. Lefterovici, and A. F. Rotundo, Phys. Rev. A 110, 032609 (2024).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube