Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable quantum circuit design for QFT-based arithmetic (2411.00260v1)

Published 31 Oct 2024 in quant-ph

Abstract: In this research, we create a scalable version of the quantum Fourier transform-based arithmetic circuit to perform addition and subtraction operations on N n-bit unsigned integers encoded in quantum registers, and it is compatible with d-level quantum sources, called qudits. We present qubit- and ququart-based multi-input QFT adders, and we compare and discuss potential benefits such as circuit simplicity and noise sensitivity. The results show that a ququart-based system significantly reduces gate count and improves computational efficiency compared to qubit-based systems. Overall, the findings presented in this study represent a promising step forward in the development of efficient quantum arithmetic circuits, particularly for multi-input operations, with clear advantages for ququart-based systems in reducing gate count, decoherence, and circuit complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. C. Bennett and D. DiVincenzo, Nature 404, 247–255 (2000).
  2. M. Keyl, Physics Reports 369, 431–548 (2002).
  3. M. Dugić and M. Ćirković, International Journal of Theoretical Physics 41, 1641–1649 (2002).
  4. A. Harrow and A. Montanaro, Nature 549, 203–209 (2017).
  5. A. Montanaro, npj Quantum Inf. 2, 15023 (2016).
  6. D. Camps, R. Van Beeumen, and C. Yang, Numerical Linear Algebra App. 28, e2331 (2021).
  7. P. Shor, SIAM J. Comput. 26, 1484–1509 (1997).
  8. V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147–153 (1996).
  9. A. Childs and W. Van Dam, Rev. Mod. Phys. 82, 1–52 (2010).
  10. P. Gossett, Quantum carry-save arithmetic (1998), http://arxiv.org/abs/quant-ph/9808061.
  11. Y. Takahashi and N. Kunihiro, QIC 5, 440–448 (2005).
  12. Y. Takahashi and N. Kunihiro, QIC 6, 184–192 (2006).
  13. Y. Takahashi and N. Kunihiro, QIC 8, 636–649 (2008).
  14. Y. Takahashi, IEICE Trans. Fundamentals E92-A, 1276–1283 (2009).
  15. T. Draper, Addition on a quantum computer (2000), arXiv:quant-ph/0008033.
  16. S. Beauregard, Circuit for shor’s algorithm using 2n+3 qubits (2003), http://arxiv.org/abs/quant-ph/0205095.
  17. C. Maynard and E. Pius, Quantum Inf Process 13, 1127–1138 (2014).
  18. L. Ruiz-Perez and J. Garcia-Escartin, Quantum Inf Process 16, 152 (2017).
  19. E. Şahin, Int. J. Quantum Inform. 18, 2050035 (2020).
  20. A. Zhang, X. Wang, and S. Zhao, CCF Trans. HPC 2, 221 (2020).
  21. A. Crimmins, Efficient quantum multiplication in the quantum fourier transform domain, Thesis, Rochester Institute of Technology (2024).
  22. A. Pavlidis and E. Floratos, Phys. Rev. A 103, 032417 (2021).
  23. J. Pachuau, A. Roy, and A. Saha, Quantum Stud.: Math. Found. 9, 155–164 (2022).
  24. A. Paler, Phys. Rev. A 106, 042444 (2022).
  25. S. Çakmak, M. Kurt, and A. Gençten, Annalen der Physik 536, 2300457 (2024).
  26. A. Muthukrishnan and C. Stroud, Physical Review A 62, 052309 (2000).
  27. A. Muthukrishnan and C. Stroud, Journal of Modern Optics 49, 2115 (2002).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com