Scalable quantum circuit design for QFT-based arithmetic (2411.00260v1)
Abstract: In this research, we create a scalable version of the quantum Fourier transform-based arithmetic circuit to perform addition and subtraction operations on N n-bit unsigned integers encoded in quantum registers, and it is compatible with d-level quantum sources, called qudits. We present qubit- and ququart-based multi-input QFT adders, and we compare and discuss potential benefits such as circuit simplicity and noise sensitivity. The results show that a ququart-based system significantly reduces gate count and improves computational efficiency compared to qubit-based systems. Overall, the findings presented in this study represent a promising step forward in the development of efficient quantum arithmetic circuits, particularly for multi-input operations, with clear advantages for ququart-based systems in reducing gate count, decoherence, and circuit complexity.
- C. Bennett and D. DiVincenzo, Nature 404, 247–255 (2000).
- M. Keyl, Physics Reports 369, 431–548 (2002).
- M. Dugić and M. Ćirković, International Journal of Theoretical Physics 41, 1641–1649 (2002).
- A. Harrow and A. Montanaro, Nature 549, 203–209 (2017).
- A. Montanaro, npj Quantum Inf. 2, 15023 (2016).
- D. Camps, R. Van Beeumen, and C. Yang, Numerical Linear Algebra App. 28, e2331 (2021).
- P. Shor, SIAM J. Comput. 26, 1484–1509 (1997).
- V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147–153 (1996).
- A. Childs and W. Van Dam, Rev. Mod. Phys. 82, 1–52 (2010).
- P. Gossett, Quantum carry-save arithmetic (1998), http://arxiv.org/abs/quant-ph/9808061.
- Y. Takahashi and N. Kunihiro, QIC 5, 440–448 (2005).
- Y. Takahashi and N. Kunihiro, QIC 6, 184–192 (2006).
- Y. Takahashi and N. Kunihiro, QIC 8, 636–649 (2008).
- Y. Takahashi, IEICE Trans. Fundamentals E92-A, 1276–1283 (2009).
- T. Draper, Addition on a quantum computer (2000), arXiv:quant-ph/0008033.
- S. Beauregard, Circuit for shor’s algorithm using 2n+3 qubits (2003), http://arxiv.org/abs/quant-ph/0205095.
- C. Maynard and E. Pius, Quantum Inf Process 13, 1127–1138 (2014).
- L. Ruiz-Perez and J. Garcia-Escartin, Quantum Inf Process 16, 152 (2017).
- E. Şahin, Int. J. Quantum Inform. 18, 2050035 (2020).
- A. Zhang, X. Wang, and S. Zhao, CCF Trans. HPC 2, 221 (2020).
- A. Crimmins, Efficient quantum multiplication in the quantum fourier transform domain, Thesis, Rochester Institute of Technology (2024).
- A. Pavlidis and E. Floratos, Phys. Rev. A 103, 032417 (2021).
- J. Pachuau, A. Roy, and A. Saha, Quantum Stud.: Math. Found. 9, 155–164 (2022).
- A. Paler, Phys. Rev. A 106, 042444 (2022).
- S. Çakmak, M. Kurt, and A. Gençten, Annalen der Physik 536, 2300457 (2024).
- A. Muthukrishnan and C. Stroud, Physical Review A 62, 052309 (2000).
- A. Muthukrishnan and C. Stroud, Journal of Modern Optics 49, 2115 (2002).